Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
1.
J Virol ; 97(6): e0054923, 2023 Jun 29.
Article in English | MEDLINE | ID: covidwho-20245375

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) has caused huge economic losses to the global pig industry. The swine enteric coronavirus spike (S) protein recognizes various cell surface molecules to regulate viral infection. In this study, we identified 211 host membrane proteins related to the S1 protein by pulldown combined with liquid-chromatography tandem mass spectrometry (LC-MS/MS) analysis. Among these, heat shock protein family A member 5 (HSPA5) was identified through screening as having a specific interaction with the PEDV S protein, and positive regulation of PEDV infection was validated by knockdown and overexpression tests. Further studies verified the role of HSPA5 in viral attachment and internalization. In addition, we found that HSPA5 interacts with S proteins through its nucleotide-binding structural domain (NBD) and that polyclonal antibodies can block viral infection. In detail, HSPA5 was found to be involved in viral trafficking via the endo-/lysosomal pathway. Inhibition of HSPA5 activity during internalization would reduce the subcellular colocalization of PEDV with lysosomes in the endo-/lysosomal pathway. Together, these findings show that HSPA5 is a novel PEDV potential target for the creation of therapeutic drugs. IMPORTANCE PEDV infection causes severe piglet mortality and threatens the global pig industry. However, the complex invasion mechanism of PEDV makes its prevention and control difficult. Here, we determined that HSPA5 is a novel target for PEDV which interacts with its S protein and is involved in viral attachment and internalization, influencing its transport via the endo-/lysosomal pathway. Our work extends knowledge about the relationship between the PEDV S and host proteins and provides a new therapeutic target against PEDV infection.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Chlorocebus aethiops , Porcine epidemic diarrhea virus/physiology , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization , Chromatography, Liquid , Tandem Mass Spectrometry , Lysosomes/metabolism , Vero Cells
2.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2126-2143, 2023 Apr.
Article in Chinese | MEDLINE | ID: covidwho-20245305

ABSTRACT

Sanhan Huashi formula(SHF) is the intermediate of a newly approved traditional Chinese medicine(TCM) Sanhan Huashi Granules for the treatment of COVID-19 infection. The chemical composition of SHF is complex since it contains 20 single herbal medicines. In this study, UHPLC-Orbitrap Exploris 240 was used to identify the chemical components in SHF and in rat plasma, lung and feces after oral administration of SHF, and heat map was plotted for characterizing the distribution of the chemical components. Chromatographic separation was conducted on a Waters ACQUITY UPLC BEH C_(18)(2.1 mm×100 mm, 1.7 µm) using 0.1% formic acid(A)-acetonitrile(B) as mobile phases in a gradient elution. Electrospray ionization(ESI) source was used to acquire data in positive and negative mode. By reference to quasi-molecular ions and MS/MS fragment ions and in combination with MS spectra of reference substances and compound information in literature reports, 80 components were identified in SHF, including 14 flavonoids, 13 coumarins, 5 lignans, 12 amino-compounds, 6 terpenes and 30 other compounds; 40 chemical components were identified in rat plasma, 27 in lung and 56 in feces. Component identification and characterization of SHF in vitro and in vivo lay foundations for disclosure of its pharmacodynamic substances and elucidation of the scientific connotation.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Lignans , Rats , Animals , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry
3.
Sci Rep ; 13(1): 9038, 2023 06 03.
Article in English | MEDLINE | ID: covidwho-20235861

ABSTRACT

Oligonucleotide mapping via liquid chromatography with UV detection coupled to tandem mass spectrometry (LC-UV-MS/MS) was recently developed to support development of Comirnaty, the world's first commercial mRNA vaccine which immunizes against the SARS-CoV-2 virus. Analogous to peptide mapping of therapeutic protein modalities, oligonucleotide mapping described here provides direct primary structure characterization of mRNA, through enzymatic digestion, accurate mass determinations, and optimized collisionally-induced fragmentation. Sample preparation for oligonucleotide mapping is a rapid, one-pot, one-enzyme digestion. The digest is analyzed via LC-MS/MS with an extended gradient and resulting data analysis employs semi-automated software. In a single method, oligonucleotide mapping readouts include a highly reproducible and completely annotated UV chromatogram with 100% maximum sequence coverage, and a microheterogeneity assessment of 5' terminus capping and 3' terminus poly(A)-tail length. Oligonucleotide mapping was pivotal to ensure the quality, safety, and efficacy of mRNA vaccines by providing: confirmation of construct identity and primary structure and assessment of product comparability following manufacturing process changes. More broadly, this technique may be used to directly interrogate the primary structure of RNA molecules in general.


Subject(s)
COVID-19 , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , SARS-CoV-2/genetics , COVID-19 Vaccines , Oligonucleotides/genetics , COVID-19/prevention & control , mRNA Vaccines , Peptide Mapping/methods , RNA, Messenger/genetics
4.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: covidwho-20237982

ABSTRACT

Sambucus ebulus (SE) fruits are used for immune stimulation and amelioration of gastrointestinal inflammatory conditions. Currently, there is no scientific evidence of their effects on various aspects of the immune response mechanisms in humans. The purpose of this study was to evaluate the immunomodulatory potential of SE fruit infusion intake in healthy humans. Anthocyanin content was determined with UPLC-ESI-MS/MS. Fifty-three volunteers enrolled in a 4-week SE infusion intake intervention. Blood count, serum total protein, Interleukin 1 beta (IL-1ß), Interleukin 6 (IL-6), Tumor Necrosis Factor Alpha (TNFα), High-sensitivity C-reactive protein (hs-CRP), C3, and C4 levels were measured on automatic analyzers, and Interleukin 8 (IL-8) was measured manually with an ELISA kit. Cyanidin-3-O-galactoside (48.15 mg/g DW), followed by cyaniding-3-sambubioside (43.41 ± 1.07 mg/g DW), were the most abundant anthocyanins in SE samples. A significant decrease in total protein (2.82%), IL-6 (20.15%), TNFα (5.38%), IL-8 (5.50%), C3 (4.16%), and C4 (14.29%) was established in the whole group. Total protein, IL-8, TNFα, and C4 decreased in women (3.11%, 4.76%, 5.09%, and 11.11%), and IL-6 decreased (40.61%) in men. Hb (1.20%) and hematocrit (1.55%) levels decreased in the whole group and in the women group (1.61% and 2.20%). SE fruits exert immune-modulatory activity as revealed by decreased pro-inflammatory status and complement activity markers in healthy volunteers after a 4-week intervention.


Subject(s)
Sambucus , Male , Humans , Female , Anthocyanins/analysis , Fruit/chemistry , Interleukin-8 , Tandem Mass Spectrometry , Interleukin-6 , Tumor Necrosis Factor-alpha , Inflammation
5.
Anal Methods ; 15(22): 2729-2735, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-2323856

ABSTRACT

The coronavirus disease (COVID-19) pandemic shows the rapid pace at which vaccine development can occur which highlights the need for more fast and efficient analytical methodologies to track and characterize candidate vaccines during manufacturing and purification processes. The candidate vaccine in this work comprises plant-derived Norovirus-like particles (NVLPs) which are structures that mimic the virus but lack any infectious genetic material. Presented here is a liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology for the quantification of viral protein VP1, the main component of the NVLPs in this study. It combines isotope dilution mass spectrometry (IDMS) with multiple reaction monitoring (MRM) to quantify targeted peptides in process intermediates. Multiple MRM transitions (precursor/product ion pairs) for VP1 peptides were tested with varying MS source conditions and collision energies. Final parameter selection for quantification includes three peptides with two MRM transitions each offering maximum detection sensitivity under optimized MS conditions. For quantification, a known concentration of the isotopically labeled version of the peptides to be quantified was added into working standard solutions to serve as an internal standard (IS); calibration curves were generated for concentration of native peptide vs. the peak area ratio of native-to-isotope labeled peptide. VP1 peptides in samples were quantified with labeled versions of the peptides added at the same level as that of the standards. Peptides were quantified with limit of detection (LOD) as low as 1.0 fmol µL-1 and limit of quantitation (LOQ) as low as 2.5 fmol µL-1. NVLP preparations spiked with known quantities of either native peptides or drug substance (DS) comprising assembled NVLPs produced recoveries indicative of minimal matrix effects. Overall, we report a fast, specific, selective, and sensitive LC-MS/MS strategy to track NVLPs through the purification steps of the DS of a Norovirus candidate vaccine. To the best of our knowledge, this is the first application of an IDMS method to track virus-like particles (VLPs) produced in plants as well as measurements performed with VP1, a Norovirus capsid protein.


Subject(s)
COVID-19 , Norovirus , Vaccines , Humans , Chromatography, Liquid/methods , Capsid Proteins , Tandem Mass Spectrometry/methods , Peptides , Isotopes , Vaccines/analysis
6.
Metabolomics ; 18(1): 6, 2021 12 20.
Article in English | MEDLINE | ID: covidwho-2310631

ABSTRACT

INTRODUCTION: The diagnosis of COVID-19 is normally based on the qualitative detection of viral nucleic acid sequences. Properties of the host response are not measured but are key in determining outcome. Although metabolic profiles are well suited to capture host state, most metabolomics studies are either underpowered, measure only a restricted subset of metabolites, compare infected individuals against uninfected control cohorts that are not suitably matched, or do not provide a compact predictive model. OBJECTIVES: Here we provide a well-powered, untargeted metabolomics assessment of 120 COVID-19 patient samples acquired at hospital admission. The study aims to predict the patient's infection severity (i.e., mild or severe) and potential outcome (i.e., discharged or deceased). METHODS: High resolution untargeted UHPLC-MS/MS analysis was performed on patient serum using both positive and negative ionization modes. A subset of 20 intermediary metabolites predictive of severity or outcome were selected based on univariate statistical significance and a multiple predictor Bayesian logistic regression model was created. RESULTS: The predictors were selected for their relevant biological function and include deoxycytidine and ureidopropionate (indirectly reflecting viral load), kynurenine (reflecting host inflammatory response), and multiple short chain acylcarnitines (energy metabolism) among others. Currently, this approach predicts outcome and severity with a Monte Carlo cross validated area under the ROC curve of 0.792 (SD 0.09) and 0.793 (SD 0.08), respectively. A blind validation study on an additional 90 patients predicted outcome and severity at ROC AUC of 0.83 (CI 0.74-0.91) and 0.76 (CI 0.67-0.86). CONCLUSION: Prognostic tests based on the markers discussed in this paper could allow improvement in the planning of COVID-19 patient treatment.


Subject(s)
COVID-19/blood , Chromatography, Liquid/methods , Metabolomics/methods , Tandem Mass Spectrometry/methods , Aged , Biomarkers/blood , Female , Humans , Male , Middle Aged , Prognosis , SARS-CoV-2 , Severity of Illness Index
7.
Biosens Bioelectron ; 225: 115102, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2311842

ABSTRACT

Growing studies focusing on nuclear acid detection via the emerging CRISPR technique demonstrate its promising application. However, limited works solve the identification of non-nucleic acid targets, especially multiple small molecules. To address challenges for point-of-care testing (POCT) in complex matrices for healthcare, environment, and food safety, we developed CRISPR Cas12a-powered highly sensitive, high throughput, intelligent POCT (iPOCT) for multiple small molecules based on a smartphone-controlled reader. As a proof of concept, aflatoxin B1 (AFB1), benzo[a]pyrene (BaP), and capsaicin (CAP) were chosen as multiple targets. First, three antigens were preloaded in independent microwells. Then, the antibody/antigen-induced fluorescent signals were consecutively transferred from the biotin-streptavidin to CRISPR/Cas12a system. Third, the fluorescent signals were recorded by a smartphone-controlled handheld dark-box readout. Under optimization, detection limits in AFB1, BaP, and CAP were 0.00257, 4.971, and 794.6 fg/mL with wide linear ranges up to four orders of magnitude. Using urine, water, soybean oil, wheat, and peanuts as the complex matrix, we recorded high selectivity, considerable recovery, repeatability, and high consistency comparison to HPLC-MS/MS methods. This work promises a practical intelligent POCT platform for multiple targets in lipid-soluble and water-soluble matrices and could be extensively applied for healthcare, environment, and food safety.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Tandem Mass Spectrometry , Aflatoxin B1 , Capsaicin , Coloring Agents , Point-of-Care Testing , Delivery of Health Care
8.
J Pharm Biomed Anal ; 233: 115436, 2023 Sep 05.
Article in English | MEDLINE | ID: covidwho-2307829

ABSTRACT

Favipiravir (FVP) is a broad-spectrum antiviral that selectively inhibits viral RNA-dependent RNA polymerase, first trialled for the treatment of influenza infection. It has been shown to be effective against a number of RNA virus families including arenaviruses, flaviviruses and enteroviruses. Most recently, FVP has been investigated as a potential therapeutic for severe acute respiratory syndrome coronavirus 2 infection. A liquid chromatography tandem mass spectrometry method for the quantification of FVP in human plasma has been developed and validated for use in clinical trials investigating favipiravir as treatment for coronavirus disease-2019. Samples were extracted by protein precipitation using acetonitrile, using 13C, 15N- Favipiravir as internal standard. Elution was performed on a Synergi Polar-RP 150 × 2.1 mm 4 µm column using a gradient mobile phase programme consisting of 0.2% formic acid in water and 0.2% formic acid in methanol. The assay was validated over the range 500-50,000 ng/mL; this method was found to be precise and accurate and recovery of FVP from the matrix was high. Stability experiments confirmed and expanded on the known stability of FVP, including under heat treatment and for a period of 10 months at - 80 °C.


Subject(s)
COVID-19 , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Reproducibility of Results , Chromatography, High Pressure Liquid/methods
9.
Curr Opin Endocrinol Diabetes Obes ; 30(3): 141-153, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2303752

ABSTRACT

PURPOSE OF REVIEW: Adrenal insufficiency (AI) is the clinical manifestation of deficient production of glucocorticoids with occasionally deficiency also in mineralocorticoids and adrenal androgens and constitutes a fatal disorder if left untreated. The aim of this review is to summarize the new trends in diagnostic methods used for determining the presence of AI. RECENT FINDINGS: Novel aetiologies of AI have emerged; severe acute respiratory syndrome coronavirus 2 infection was linked to increased frequency of primary AI (PAI). A new class of drugs, the immune checkpoint inhibitors (ICIs) widely used for the treatment of several malignancies, has been implicated mostly with secondary AI, but also with PAI. Salivary cortisol is considered a noninvasive and patient-friendly tool and has shown promising results in diagnosing AI, although the normal cut-off values remain an issue of debate depending on the technique used. Liquid chromatography-mass spectrometry (LC-MS/MS) is the most reliable technique although not widely available. SUMMARY: Our research has shown that little progress has been made regarding our knowledge on AI. Coronavirus disease 2019 and ICIs use constitute new evidence on the pathogenesis of AI. The short synacthen test (SST) remains the 'gold-standard' method for confirmation of AI diagnosis, although salivary cortisol is a promising tool.


Subject(s)
Adrenal Insufficiency , COVID-19 , Humans , Hydrocortisone , Chromatography, Liquid , Tandem Mass Spectrometry , COVID-19/diagnosis , Adrenal Insufficiency/diagnosis , COVID-19 Testing
10.
Microb Cell Fact ; 22(1): 79, 2023 Apr 25.
Article in English | MEDLINE | ID: covidwho-2290849

ABSTRACT

BRIEF INTRODUCTION: Mucormycosis disease, which has recently expanded with the Covid 19 pandemic in many countries, endangers patients' lives, and treatment with common drugs is fraught with unfavorable side effects. AIM AND OBJECTIVES: This study deals with the economic production of sophorolipids (SLs) from different eight fungal isolates strains utilizing potato peels waste (PPW) and frying oil waste (FOW). Then investigate their effect against mucormycetes fungi. RESULTS: The screening of the isolates for SLs production revealed the highest yield (39 g/100 g substrate) with most efficiency was related to a yeast that have been identified genetically as Candida parapsilosis. Moreover, the characterizations studies of the produced SLs by FTIR, 1H NMR and LC-MS/MS proved the existence of both acidic and lactonic forms, while their surface activity was confirmed by the surface tension (ST) assessment. The SLs production was optimized utilizing Box-Behnken design resulting in the amelioration of yield by 30% (55.3 g/100 g substrate) and ST by 20.8% (38mN/m) with constant level of the critical micelle concentration (CMC) at 125 mg/L. The studies also revealed the high affinity toward soybean oil (E24 = 50%), in addition to maintaining the emulsions stability against broad range of pH (4-10) and temperature (10-100℃). Furthermore, the antifungal activity against Mucor racemosus, Rhizopus microsporus, and Syncephalastrum racemosum proved a high inhibition efficiency of the produced SLs. CONCLUSION: The findings demonstrated the potential application of the SLs produced economically from agricultural waste as an effective and safer alternative for the treatment of infection caused by black fungus.


Subject(s)
COVID-19 , Mucorales , Solanum tuberosum , Humans , Candida parapsilosis , Chromatography, Liquid , Tandem Mass Spectrometry
11.
Chem Biodivers ; 20(6): e202201197, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2295949

ABSTRACT

Four undescribed biflavonoid alkaloids, sinenbiflavones A-D, were isolated from Cephalotaxus sinensis using a MS/MS-based molecular networking guided strategy. Their structures were elucidated by series of spectroscopic methods (HR-ESI-MS, UV, IR, 1D, and 2D NMR). Sinenbiflavones A-D are the first examples of amentoflavone-type (C-3'-C-8'') biflavonoid alkaloids. Meanwhile, sinenbiflavones B and D are the unique C-6-methylated amentoflavone-type biflavonoid alkaloids. Sinenbiflavone D showed weak SARS-CoV-2 3CLpro inhibitory activity with 43 % inhibition rate at 40 µM.


Subject(s)
Alkaloids , Biflavonoids , COVID-19 , Cephalotaxus , Biflavonoids/chemistry , Molecular Structure , Cephalotaxus/chemistry , Tandem Mass Spectrometry , SARS-CoV-2 , Alkaloids/chemistry , Magnetic Resonance Spectroscopy
12.
Molecules ; 28(7)2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2292869

ABSTRACT

Traditional medicine shows several treatment protocols for COVID-19 based on natural products, revealing its potential as a possible source of anti-SARS-CoV-2 agents. Ampelozizyphus amazonicus is popularly used in the Brazilian Amazon as a fortifier and tonic, and recently, it has been reported to relieve COVID-19 symptoms. This work aimed to investigate the antiviral potential of A. amazonicus, focusing on the inhibition of spike and ACE2 receptor interaction, a key step in successful infection. Although saponins are the major compounds of this plant and often reported as its active principles, a polyphenol-rich extract was the best inhibitor of the spike and ACE2 interaction. Chemical characterization of A. amazonicus bark extracts by LC-DAD-APCI-MS/MS before and after clean-up steps for polyphenol removal showed that the latter play an essential role in maintaining this activity. The effects of the extracts on viral replication were also assessed, and all samples (aqueous and ethanol extracts) demonstrated in vitro activity, inhibiting viral titers in the supernatant of Calu-3 cells after 24 hpi. By acting both in the SARS-CoV-2 cell entry process and its replication, A. amazonicus bark extracts stand out as a multitarget agent, highlighting the species as a promising candidate in the development of anti-SARS-CoV-2 drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Plant Bark , Tandem Mass Spectrometry , Antiviral Agents/pharmacology , Protein Binding
13.
Mycoses ; 66(5): 396-404, 2023 May.
Article in English | MEDLINE | ID: covidwho-2292408

ABSTRACT

BACKGROUND: Voriconazole (VRC), a widely used triazole antifungal, exhibits significant inter- and intra-individual pharmacokinetic variability. The main metabolite voriconazole N-oxide (NOX) can provide information on the patient's drug metabolism capacity. OBJECTIVES: Our objectives were to implement routine measurement of NOX concentrations and to describe the metabolic ratio (MR), and the contribution of the MR to VRC therapeutic drug monitoring (TDM) by proposing a suggested dosage-adjustment algorithm. PATIENTS AND METHODS: Sixty-one patients treated with VRC were prospectively included in the study, and VRC and NOX levels were assayed by LC-MS/MS. A mixed logistic model on repeated measures was implemented to analyse risk factors for the patient's concentration to be outside the therapeutic range. RESULTS: Based on 225 measurements, the median and interquartile range were 2.4 µg/ml (1.2; 4.2), 2.1 µg/ml (1.5; 3.0) and 1.0 (0.6; 1.9) for VRC, NOX and the MR, respectively. VRC Cmin <2 µg/ml were associated with a higher MR during the previous visit. MR values >1.15 and <0.48 were determined to be the best predictors for having a VRC Cmin lower than 2 µg/ml and above 5.5 µg/ml, respectively, at the next visit. CONCLUSIONS: Measurement of NOX resulted useful for TDM of patients treated with VRC. The MR using NOX informed interpretation and clinical decision-making and is very interesting for complex patients. VRC phenotyping based on the MR is now performed routinely in our institution. A dosing algorithm has been suggested from these results.


Subject(s)
Drug Monitoring , Invasive Fungal Infections , Humans , Voriconazole , Drug Monitoring/methods , Chromatography, Liquid , Tandem Mass Spectrometry , Antifungal Agents , Invasive Fungal Infections/drug therapy , Oxides
14.
Sci Rep ; 13(1): 6497, 2023 04 20.
Article in English | MEDLINE | ID: covidwho-2296927

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is highly heterogeneous, ranging from asymptomatic to severe and fatal cases. COVID-19 has been characterized by an increase of serum pro-inflammatory cytokine levels which seems to be associated with fatal cases. By contrast, the role of pro-resolving lipid mediators (SPMs), involved in the attenuation of inflammatory responses, has been scarcely investigated, so further studies are needed to understand SPMs metabolism in COVID-19 and other infectious diseases. Our aim was to analyse the lipid mediator metabolome, quantifying pro- and anti-inflammatory serum bioactive lipids by LC-MS/MS in 7 non-infected subjects and 24 COVID-19 patients divided into mild, moderate, and severe groups according to the pulmonary involvement, to better understand the disease outcome and the severity of the pulmonary manifestations. Statistical analysis was performed with the R programming language (R Foundation for Statistical Computing, Vienna, Austria). All COVID-19 patients had increased levels of Prostaglandin E2. Severe patients showed a significant increase versus controls, mild- and moderate-affected patients, expressed as median (interquartile range), in resolvin E1 [112.6 (502.7) vs 0.0 (0.0) pg/ml in the other groups], as well as in maresin 2 [14.5 (7.0) vs 8.1 (4.2), 5.5 (4.3), and 3.0 (4.0) pg/ml, respectively]. Moreover, 14-hydroxy docosahexaenoic acid (14-HDHA) levels were also increased in severe vs control and mild-affected patients [24.7 (38.2) vs 2.4 (2.2) and 3.7 (6.4) ng/mL, respectively]. Resolvin D5 was also significantly elevated in both moderate [15.0 (22.4) pg/ml] and severe patients [24.0 (24.1) pg/ml] versus controls [0.0 (0.0) pg/ml]. These results were confirmed by sparse partial least squares discriminant analysis which highlighted the contribution of these mediators to the separation between each of the groups. In conclusion, the potent inflammatory response to SARS-CoV-2 infection involves not only pro- but also anti-inflammatory lipid mediators that can be quantified in easily accessible serum samples, suggesting the need to perform future research on their generation pathways that will help us to discover new therapeutic targets.


Subject(s)
COVID-19 , Humans , Pilot Projects , Chromatography, Liquid , SARS-CoV-2/metabolism , Tandem Mass Spectrometry , Lung/metabolism , Eicosanoids/metabolism , Anti-Inflammatory Agents , Patient Acuity
15.
Phytomedicine ; 114: 154796, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2306476

ABSTRACT

BACKGROUND: The 3C-like proteases (3CLpros) are cysteine-rich homodimeric proteins and can be covalently modified by numerous natural and synthetic compounds, which in turn, block the proteolytic activity or the formation of enzymatically active dimeric forms. Although herbal medicines have been widely used to treat COVID-19, identification of the key herbal constituents that can covalently modify the 3CLpros in ß-coronaviruses (CoVs) remains a big challenge. AIMS: To construct a comprehensive approach for efficient discovering the covalent SARS-CoV-2 3CLpro inhibitors from herbal medicines. To decipher the key anti-SARS-CoV-2 3CLpro constituents in Ginkgo biloba extract 50 (GBE50) and to study their anti-SARS-CoV-2 3CLpro mechanisms. METHODS: SARS-CoV-2 3CLpro inhibition assay including time-dependent inhibition assays and inactivation kinetic analyses were conducted using a fluorescence-based biochemical assay. The constituents in GBE50 were analyzed by UHPLC-Q-Exactive Orbitrap HRMS. The peptides modified by herbal constituents were characterized by using nanoLC-MS/MS. RESULTS: Following testing the anti-SARS-CoV-2 3CLpro effects of 104 herbal medicines, it was found that Ginkgo biloba extract 50 (GBE50) potently inhibited SARS-CoV-2 3CLpro in dose- and time-dependent manners. A total of 38 constituents were identified from GBE50 by UHPLC-Q-Exactive Orbitrap HRMS, while 26 peptides modified by 18 constituents were identified by chemoproteomic profiling. The anti-SARS-CoV-2 3CLpro effects of 18 identified covalent inhibitors were then validated by performing time-dependent inhibition assays. The results clearly demonstrated that most tested constituents showed time-dependent inhibition on SARS-CoV-2 3CLpro, while gallocatechin and sciadopitysin displayed the most potent anti-SARS-CoV-2 3CLpro effects. CONCLUSION: Collectively, GBE50 and some constituents in this herbal product could strongly inhibit SARS-CoV-2 3CLpro in dose- and time-dependent manner. Gallocatechin and sciadopitysin were identified as potent SARS-CoV-2 3CLpro inhibitors, which offers promising lead compounds for the development of novel anti-SARS-CoV-2 drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Peptides , Plant Extracts , Tandem Mass Spectrometry
16.
Clin Drug Investig ; 43(4): 307-314, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2302059

ABSTRACT

BACKGROUND AND OBJECTIVE: Resistance to antibacterial substances is a huge and still emerging issue, especially with regard to Gram-negative bacteria and in critically ill patients. We report a study in six patients infected with extensively drug-resistant Gram-negative bacteria in a limited outbreak who were successfully managed with a quasi-continuous infusion of cefiderocol. METHODS: Patients were initially treated with prolonged infusions of cefiderocol over 3 h every 8 h, and the application mode was then switched to a quasi-continuous infusion of 2 g over 8 h, i.e. 6 g in 24 h. Therapeutic drug monitoring (TDM) was established using an in-house liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. RESULTS: Determined trough plasma concentrations were a median of 50.00 mg/L [95% confidence interval (CI) 27.20, 74.60] and steady-state plasma concentrations were a median of 90.96 mg/L [95% CI 37.80, 124]. No significant differences were detected with respect to acute kidney injury/continuous renal replacement therapy. Plasma concentrations determined from different modes of storage were almost equal when frozen or cooled, but markedly reduced when stored at room temperature. CONCLUSIONS: (Quasi) continuous application of cefiderocol 6 g/24 h in conjunction with TDM is a feasible mode of application; the sample for TDM should either be immediately analyzed, cooled, or frozen prior to analysis.


Subject(s)
Drug Monitoring , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Feasibility Studies , Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacteria
17.
J Pharm Biomed Anal ; 228: 115340, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2288912

ABSTRACT

VV116 is an oral nucleoside anti-COVID-19 drug undergoing clinical trials in China. We aimed to characterize its metabolites in plasma, urine, and feces of healthy Chinese male subjects after a single oral administration of 400 mg VV116, by using UHPLC-UV-Orbitrap-MS. After oral administration, VV116 was almost completely converted into the metabolite 116-N1. Seventeen other metabolites produced by the subsequent metabolism of 116-N1 were also detected, including 6 phase I metabolites and 11 phase II metabolites resulting from hydrolysis, oxidative deamination, oxidation, and CN-group removal and conjugations. The results were exploratory. The major metabolite of VV116 in human plasma and urine was 116-N1, the main metabolites in feces were M2 and 116-N1. We then synthesized a reference M2 standard and confirmed its structure by MS and NMR.


Subject(s)
Nucleosides , Tandem Mass Spectrometry , Humans , Male , Pharmaceutical Preparations , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Administration, Oral
18.
Expert Rev Proteomics ; 20(1-3): 5-18, 2023.
Article in English | MEDLINE | ID: covidwho-2259866

ABSTRACT

INTRODUCTION: The COVID-19 outbreak has put enormous pressure on the scientific community to detect infection rapidly, identify the status of disease severity, and provide an immediate vaccine/drug for the treatment. Relying on immunoassay and a real-time reverse transcription polymerase chain reaction (rRT-PCR) led to many false-negative and false-positive reports. Therefore, detecting biomarkers is an alternative and reliable approach for determining the infection, its severity, and disease progression. Recent advances in liquid chromatography and mass spectrometry (LC-MS/MS) enable the protein biomarkers even at low concentrations, thus facilitating clinicians to monitor the treatment in hospitals. AREAS COVERED: This review highlights the role of LC-MS/MS in identifying protein biomarkers and discusses the clinically significant protein biomarkers such as Serum amyloid A, Interleukin-6, C-Reactive Protein, Lactate dehydrogenase, D-dimer, cardiac troponin, ferritin, Alanine transaminase, Aspartate transaminase, gelsolin and galectin-3-binding protein in COVID-19, and their analysis by LC-MS/MS in the early stage. EXPERT OPINION: Clinical doctors monitor significant biomarkers to understand, stratify, and treat patients according to disease severity. Knowledge of clinically significant COVID-19 protein biomarkers is critical not only for COVID-19 caused by the coronavirus but also to prepare us for future pandemics of other diseases in detecting by LC-MS/MS at the early stages.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Chromatography, Liquid , Tandem Mass Spectrometry , Biomarkers
19.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: covidwho-2267127

ABSTRACT

Angiotensin II (AngII) is a vasoactive peptide hormone, which, under pathological conditions, contributes to the development of cardiovascular diseases. Oxysterols, including 25-hydroxycholesterol (25-HC), the product of cholesterol-25-hydroxylase (CH25H), also have detrimental effects on vascular health by affecting vascular smooth muscle cells (VSMCs). We investigated AngII-induced gene expression changes in VSMCs to explore whether AngII stimulus and 25-HC production have a connection in the vasculature. RNA-sequencing revealed that Ch25h is significantly upregulated in response to AngII stimulus. The Ch25h mRNA levels were elevated robustly (~50-fold) 1 h after AngII (100 nM) stimulation compared to baseline levels. Using inhibitors, we specified that the AngII-induced Ch25h upregulation is type 1 angiotensin II receptor- and Gq/11 activity-dependent. Furthermore, p38 MAPK has a crucial role in the upregulation of Ch25h. We performed LC-MS/MS to identify 25-HC in the supernatant of AngII-stimulated VSMCs. In the supernatants, 25-HC concentration peaked 4 h after AngII stimulation. Our findings provide insight into the pathways mediating AngII-induced Ch25h upregulation. Our study elucidates a connection between AngII stimulus and 25-HC production in primary rat VSMCs. These results potentially lead to the identification and understanding of new mechanisms in the pathogenesis of vascular impairments.


Subject(s)
Angiotensin II , Muscle, Smooth, Vascular , Steroid Hydroxylases , Animals , Rats , Angiotensin II/metabolism , Cells, Cultured , Chromatography, Liquid , Gene Expression , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/metabolism , Tandem Mass Spectrometry , Steroid Hydroxylases/genetics
20.
Molecules ; 28(5)2023 Feb 21.
Article in English | MEDLINE | ID: covidwho-2277948

ABSTRACT

Three types of extraction were used to obtain biologically active substances from the heartwood of M. amurensis: supercritical CO2 extraction, maceration with EtOH, and maceration with MeOH. The supercritical extraction method proved to be the most effective type of extraction, giving the highest yield of biologically active substances. Several experimental conditions were investigated in the pressure range of 50-400 bar, with 2% of ethanol as co-solvent in the liquid phase at a temperature in the range of 31-70 °C. The most effective extraction conditions are: pressure of 100 bar and a temperature of 55 °C for M. amurensis heartwood. The heartwood of M. amurensis contains various polyphenolic compounds and compounds of other chemical groups with valuable biological activity. Tandem mass spectrometry (HPLC-ESI-ion trap) was applied to detect target analytes. High-accuracy mass spectrometric data were recorded on an ion trap equipped with an ESI source in the modes of negative and positive ions. The four-stage ion separation mode was implemented. Sixty-six different biologically active components have been identified in M. amurensis extracts. Twenty-two polyphenols were identified for the first time in the genus Maackia.


Subject(s)
Carbon Dioxide , Maackia , Tandem Mass Spectrometry , Polyphenols , Solvents/chemistry , Chromatography, High Pressure Liquid , Ethanol , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL